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Abstract— Robotic systems such as unmanned ground vehi-
cles (UGVs) often depend on GPS for navigation in outdoor
environments. In GPS-denied environments, one approach to
maintain a global state estimate is localizing based on preexist-
ing georeferenced aerial or satellite imagery. However, this is
inherently challenged by the significantly differing perspectives
between the UGV and reference images. In this paper, we
introduce a system for global localization of UGVs in re-
mote, natural environments. We use multi-stereo visual inertial
odometry (MSVIO) to provide local tracking. To overcome
the challenge of differing viewpoints we use a probabilistic
occupancy model to generate synthetic orthographic images
from color images taken by the UGYV. We then derive global
information by scan matching local images to existing reference
imagery and then use a pose graph to fuse the measurements
to provide uninterrupted global positioning after loss of GPS
signal. We show that our system generates visually accurate
orthographic images of the environment, provides reliable
global measurements, and maintains an accurate global state
estimate in GPS-denied conditions.

I. INTRODUCTION

A global state estimate is often crucial to robotic platforms
during autonomous navigation. In particular, planning algo-
rithms require a global state estimate whenever their mission
objectives are tied to global locations. When available, a
GPS receiver is the best source for global state information.
These sensors are relatively accurate and good signals are
common in most places. However, GPS is not infallible:
natural and urban terrain can disrupt GPS signals, GPS can
be jammed in adversarial settings, and the global navigation
satellite system itself can experience failures. Failing to
provide global localization estimates can at best impede a
robot’s operation and at worst result in a failed mission and
the loss of the robot. We therefore concern ourselves with
overcoming these GPS failure modes by providing a global
state estimate to an unmanned ground vehicle (UGV) after
the loss of signal.

We introduce a system for real-time global position es-
timation in remote, natural environments using preexisting
aerial or satellite imagery. Our system consists of four mod-
ules. First is a multi-stereo visual inertial odometry (MSVIO)
module that provides robust local odometry using multiple
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Fig. 1: An example of the localization process where synthetic orthographic
images generated by the UGV are matched to corresponding locations in the
reference aerial imagery, with an example alignment shown in the green box.
Successful registrations, or green dots, are used as global measurements to
correct the drift of the orange MSVIO trajectory, resulting in a blue corrected
trajectory. After global optimization, the corrected trajectory exhibits less
drift from the dashed black ground truth trajectory than MSVIO.

stereo-camera pairs. Second is a mapping module that uses a
probabilistic 3D occupancy model to generate visually accu-
rate synthetic orthographic images of the UGV’s local sur-
roundings. Third is a registration module that derives global
state measurements by registering images from the mapping
module with georeferenced aerial or satellite imagery via a
robust scan matching algorithm. Finally, the fourth module
combines MSVIO measurements with registration results in
a global pose graph to provide a continuous and consistent
global state estimate. Our complete system can operate in
real-time. In sum, we make four main contributions:

1) We develop a MSVIO formulation for efficient and
fault-tolerant local state estimation.

2) We overcome challenges to existing work with an im-
age generation method that provides visually accurate
orthographic views of the UGV’s local environment.

3) We provide a full localization pipeline to provide real-
time global position estimates.

4) We compare our method to the state of the art for
GPS-denied visual localization on real world datasets.



II. RELATED WORK

Historically, the standard solutions to GPS-denied local-
ization are dead reckoning and simultaneous localization and
mapping (SLAM). These methods are well studied, efficient,
and widely used. However, both solutions can drift relative to
a global frame even with known initial state. SLAM solutions
account for drift with loop closures but such measurements
require re-visitations which, in general operation, cannot be
assumed. An alternate method to loop closures that can
correct drift in GPS-denied environments is to compare
sensor measurements to georeferenced information. Such
measurements can be combined with dead reckoning or a
SLAM solution to provide global state estimation.

A popular source of georeferenced information for urban
environments is a high definition (HD) map [4], [22]. HD
maps provide rich and highly accurate reconstructions of
roadways and enable recovering accurate global state. How-
ever, these maps and the algorithms that use them to localize
rely on known semantic meaning of urban infrastructure
(e.g. lane markings, street signs). Additionally, the creation
and maintenance of HD maps is prohibitively expensive
even in urban centers [8], [24], [27], [29]. Constructing
and maintaining these maps for much larger natural, remote
environments would be impractical given current state-of-
the-art methods and even if constructed these map’s reliance
on known semantic meaning would significantly reduce their
efficacy in remote environments.

In this paper we focus on GPS-denied localization in
natural remote environments where the lack of semantic
structures necessitates different approaches to GPS-denied
localization than in urban centers. To operate in natural,
remote environments we first need a source of georefer-
enced information collected and maintained at scale in these
environments. There are two clear candidates for this role:
1. Aerial and satellite imagery, referred to jointly as “refer-
ence imagery”, and 2. Digital Elevation Models (DEMs).

One method to recover global state using a DEM is to
perform horizon matching [3], [25]. The horizon’s profile
is extracted from UGV images and matched to a DEM
giving a rough location of the UGV. However, all horizon
matching methods assume a clear view of the horizon.
This assumption is violated when operating in and around
vegetation or structures. Another method is to construct
a local elevation model that can be matched against the
reference DEM [14]. However, matching to the reference
DEM requires observation of non-planar terrain features that
can well constrain the UGV position. These features exist
in the DEM at the scale of hills, mountains, and valleys.
The local elevation model would therefore have to be large
enough to contain such features. It is very likely that any
UGV local state estimate will drift significantly before a
sufficiently large model could be constructed. Such drift
would result in the construction of a self-inconsistent local
model that would not match against the reference DEM.

Unlike DEMs, reference imagery contains features at a
scale that is practical for a UGV to observe. However,
UGV localization to reference imagery is challenged by the

significant view point difference; a UGV sees a scene much
differently than a satellite does. [35] addresses this challenge
by warping a 360° image onto the ground plane (assumed
flat) to approximate the viewpoint of the reference imagery
and compared to reference imagery using a whole image
SIFT descriptor. However, it is noted in this work that where
the flat ground assumption is violated (by vegetation, objects,
buildings, etc.), significant artifacts appear in the resulting
image which leads to decreased performance.

Another approach to tackle the view-point challenge is
to learn a deep model to embed corresponding ground and
reference images closely in feature space [18], [21]. These
methods are notably inspired by the geolocalization work of
[1], [36] with the added complexity of handling “cross view”
image pairs. Both of these methods suffer from high variance
individual measurements and, conditionally, poor generaliza-
tion. The later of which is of particular importance given
natural remote environments are often underrepresented in
training data.

A parallel line of work has studied localization of aerial
vehicles using reference imagery, where the view point
difference is often negligible. Given a common viewpoint,
methods similar to those explored for UGVs are possible
including deep feature matching [2], [33], and classical
feature matching [32]. In addition, many more measurement
methods are possible including visual scan matching [9],
visual feature matching [5], semantic feature alignment [6],
[23], and pose optimization [13], [28], [37]. Many of these
methods provide more accurate, lower variance measure-
ments than those for ground images and enable the use of
modern optimization techniques for recovering a global state
estimate [7], [20], [26], [30].

Related work has shown promising results for UGV lo-
calization relative to reference imagery, yet the issue of
viewpoint difference remains. This motivates our work to
create a UGV localization pipeline that allows for the con-
struction and registration of synthetic top down images that
are visually accurate to existing reference imagery even in the
presence of surrounding vegetation. Furthermore, by fusing
the registration results with visual inertial sensing we can
conduct high accuracy global state estimation in real time.

III. METHODOLOGY

Our global localization pipeline consists of four modules
that carry out the following consecutive operations: 1) obtain
local position estimates from MSVIO, 2) use the MSVIO
estimates to build a local map, 3) register the local map
to reference aerial imagery with scan matching, and 4) fuse
the global registration measurements with the local odometry
from MSVIO into a pose graph to produce global position
estimates.

A. Multi-Stereo Visual-Inertial Odometry

Our MSVIO module is driven by the design described
in [19]. Instead of running multiple independent VIO algo-
rithms across individual cameras, we opt to track features
across frames from all camera pairs and gather the features



Fig. 2: A local map shown on the left can exhibit artifacts like blue sky pixels due to noise in disparity. By explicitly modeling the occupancy probability
in a 3D occupancy grid, we can filter out voxels of low occupancy probability by rendering a local map with only voxels of high occupancy probability,
shown in dark in the center image. This removes the most significant artifacts from the final local map shown on the right. For visualization, we ignore

voxels with occupancy probability below 0.5.

into a single set. Given the disparity calculated via semi-
global block matching (SGBM) [15] from the previous
frame, points can be triangulated and matched to existing
2D features from the current frame. Instead of performing
RANSAC with a generalized camera model, which may
require a large sample size, we opt for a simpler solution.
Points from the front camera are selected for P3P, but the
inlier check is performed across all cameras. Since the side
cameras are easily occluded by vegetation, they may not
always provide reliable points, while the front camera does as
it faces the direction of motion. Finally we pass the collection
of inliers and inertial measurements into a fixed-lag smoother
to jointly optimize for the relative motion of the UGV.

MSVIO is substantially more robust than the more com-
mon single stereo VIO. The main advantage of using multiple
cameras is a wider field of view. In situations where one
stereo pair captures an image that may be too challenging
for tracking visual features, the system uses the features
from other frames that are tracking well. Thus, the system is
able to compute accurate odometry in challenging scenarios
where traditional single stereo VIO approaches would fail.
Alternatively, this can be done with a single fish-eye camera,
but at the cost of reduced resolution.

B. Local Map Construction

With the position estimation from the MSVIO and color
images from each stereo pair, the local map construction
module generates the image used for the global registration
process. First, we use the computed disparity to project a
dense sampling of pixels from each image into 3D space
around the robot. This provides us with a 3D point cloud for
which each point has an associated RGB value. From this
step we could directly generate the orthographic image by
spatially binning this point cloud into a 2D image.

However, stereo matching often provides noisy results
when applied in real-world scenarios. This causes significant
artifacts in the resulting local map, as shown in Fig. 2} and
would in turn decrease registration performance. To address
this challenge we accumulate points into a 3D probabilistic
occupancy grid based on the binary Bayes filter derived
in [16]. Since our UGV traverses over long distances, we

implement a scrolling occupancy grid which is centered
around the vehicle and purges voxels that are outside the
grid’s bounds. This ensures the local map remains visually
consistent with the reference imagery and not affected by
drift from MSVIO.

With the stereo depth data z;,.., and VIO poses X, .¢,,
the probability that a voxel is occupied or free is denoted as
P(V | Zt, 45, Xt 1, )- Note that ¢1 to to is the timeframe where
the voxel is inside the 3D grid. This can be efficiently com-
puted with a log-odds formula that uses the prior occupancy
probability, which we set as p(v) = 0.5 as we do not have
any occupancy information at the beginning:

p(l) | Zy ity Xt11t2)

l(v ‘ Ztl:tzaxtlitz) = 1Og (1 —p(’U ‘ Zi b0 Xt )) (1)
1:t2y Atqito

The sensor model we use for determining occupancy
raytraces from the vehicle position until it hits the position
of the voxel containing the computed 3D point from stereo
depth. Using the log-odds equation, the occupancy proba-
bility is incremented at the hit voxel and decremented for
missed voxels. Our stereo depth model weighs hits higher
than misses, and constrains the maximum and minimum
occupancy probability for each voxel as in [16]. In addition to
occupancy, our model tracks the color for each occupied cell
by interpolating the color of all points within it independently
for each channel.

Using this tracked occupancy and color information we
generate the local map as a synthetic orthographic image.
A 2D image is initialized to the exact width and length
as the occupancy grid. Each pixel in the image is colored
using the color information provided by the top most cell
at the corresponding position in the occupancy grid whose
occupancy probability is greater than a predefined threshold.
An example local map generated with and without our
occupancy modeling is shown in Fig. [2]

C. Registration

We can derive global state measurements by registering the
local maps onto reference imagery. In addition to the local
map, our registration algorithm requires a current global state
estimate that is provided by the global pose graph module.
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Fig. 3: The search region in the top left is extracted from reference imagery
around the current global position estimate. The local map in the top right
is matched against this region with 3D scan matching. The 3D cost volume
Cth after thresholding is shown on the bottom for a subset of search angles.
Overlaid on the cost volume is the optimum’s location and covariance
denoted by the red “+” and ellipses, respectively.

With the global pose estimate and local map, we per-
form scan matching over translation and rotation differences
Ar = [Az, Ay, AO]T between the local map and a subset
of the georeferenced imagery defined around the current
global state estimate. We then extract the optimum from
the resulting volume, as shown in Fig. [3} This, along with
the known location of the reference image and the vehicle’s
position relative to the local map resolve the vehicle’s global
location and heading. Finally, to fully constrain the vehicle’s
translation we perform a lookup on a DEM at the measured
global location to determine the UGV’s altitude.

The scan matching process can make use of any similarity
or difference measure. Our algorithm uses normalized cross
correlation (NCC). Due to sparsity in the local map we
employ a variant of NCC that uses an image mask M to
calculate the cost volume C between our reference imagery
R and the local map T. For a single rotation angle, such
that T' has been rotated by A6 around the vehicle’s location
in the local map to form T sy, we compute NCC as

CA!‘ =
21 (Tao.; - Ractiayss - Mij) 2

\/Zm‘ (Tao, - Mij)* - o Ragsiapss - Miy)*

This is performed for each A# in the search space to
construct the cost volume.

An alternative to scan matching is to perform a non-
linear optimization over the cost function. However, this cost
function is non-convex and therefore optimization is highly
susceptible to converging to local optima. Scan matching
provides a global (or pseudo-global given we limit our search
to a region) view of the cost function. Therefore, at the
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Fig. 4: An example of an outlier registration. On the right is a top down
view of the non-zero entries of the cost volume after thresholding. We can
see three distinct modes in this volume indicating a poor or ambiguous
measurement. On the left is the alignment according to the cost volume
optimum. The correct registration would align the red and blue dots at the
proper angle.

cost of computation, scan matching ensures that we find
the true optimum within the search region. Additionally, the
pseudo-global view of the cost function enables us to perform
covariance estimation and outlier rejection that would not be
possible within an optimization based registration algorithm.

To calculate the covariance we first threshold C to retain
only weights that are within one standard deviation of the
optimum to create C*". The remaining non-zero entries rep-
resent weighted samples from the measurement distribution.
Next, the weights for these samples are normalized into
probabilities p(Ar). NCC weighs are strictly positive and
normalized according to

CY.,
p(Ar;) = ﬁ (3)
j Ay

and the covariance is calculated with the mean pu as

YAr = ZP(AI‘i)(ATi — p)(Ar; — )" “4)

The costmap produced by scan matching also allows for
robust outlier rejection. We expect a good registration to
produce a single peak within the interior of the cost volume.
This indicates that the search region contains what is likely
the global optimum and that this optimum is well defined
and unique. This expected behavior leads to two heuristics
used for outlier rejection. First, a measurement is considered
an outlier if the optimum lies on the edge of the cost volume.
Such positioning suggests that the true optimum is outside
the current search region and the registration should be
performed again. Second, a measurement is considered an
outlier when less than a specified proportion (e.g., 90%) of
samples in the C*" are within the same 6-neighbor connected
component as the optimum. This condition is violated when
there are multiple significant peaks indicating a poor or am-
biguous registration. An example of an registration identified
as an outlier by these heuristics can be seen in Fig. @]

D. Global Registration Pose Graph

After we get the global measurements, we pair them with
the local odometry estimates from MSVIO into one pose
graph optimization scheme, motivated by [30]. We represent



Fig. 5: An illustration of the global pose graph. The white nodes represent
the 6 DOF pose of the vehicle in the global frame, the black factors represent
the MSVIO relative constraints, the red and green factors represent the
registration and elevation constraints, respectively, and the blue factor is a
prior on the initial state.

our estimation as a maximum a posteriori (MAP) problem
where we estimate the poses of all frames up to a time ¢

X} &)

For our scenario, MSVIO measurements are used as the
relative constraints between states and registration and eleva-
tion measurements, denoted by h, are used as unary factors.
The elevation factor is constructed using the elevation value
obtained directly from a DEM at the given registration
measurement coordinates and a constant Gaussian noise
derived from the DEM’s resolution. We also impose a 6 DOF
prior which comes from the assumption that our localization
pipeline starts after loss of GPS signal and therefore that
the initial state is known. The complete pose graph scheme,
or solution to the MAP, is seen in Fig. |§[ This is under
the assumption that the measurement noises follow a zero-
mean noise Gaussian distribution, and thus the MAP solution
simplifies to a nonlinear least-squares problem [11] as

Xt = {XO,..

t
X = argmin ||xo|[%, + > (IIP(xi-1,%)|[3,, )
Xt N——— —_———

i=1
® Prior ® MSVIO Factor

t/N (6)

+ ) (1H (xni, hvi) 13, + 1R )13, )
i=1

® Elevation Factor ® Registration Factor

where the measurement covariances for the corresponding
factors are Xo,Xp, Xy, SR, ||[v]|% is the squared Maha-
lanobis distance of v, and NV is the number of frames between
adding registration and elevation factors.

It is important to note that sequential MSVIO odometry
measurements are in reality correlated, as features can be
tracked between sequential segments. They are, however,
assumed independent in the factor graph. We build the graph
using the GTSAM framework [10] and incrementally opti-
mize in real time as MSVIO and registration measurements
are acquired. Since this is a nonlinear problem, we solve
using the Gauss-Newton method.

IV. EXPERIMENTAL VALIDATION

Data was collected by a UGV platform with 5 stereo pairs
which are synchronized with an IMU through an on-board
FPGA, shown in Fig. [f] The extrinsic parameters of the
cameras were estimated using the method described in [12].
Images are captured at a rate of 4 Hz, and IMU outputs data
at 100 Hz. The vehicle was driven around a field testing site

IMU J

Fig. 6: A diagram of the vehicle used for data collection, with an example
of the stereo images (one from each stereo pair). The vehicle was equipped
with five stereo pairs as well as an IMU module, all time synchronized with
an FPGA.

in Pittsburgh to collect data for two trajectories, with ground
truth provided by real time kinematic GPS.

Reference aerial imagery of the test site was acquired
from a third partyﬂ The imagery was captured in the same
season but a year prior to data collection at a resolution of
approximately 0.23 meters per pixel. We use a DEM from
the National Elevation Dataset [34]. We generate and register
the local map against the reference imagery every 50 frames.

For comparison we implement two alternative methods
based on [35] and [18], referred to as “ORB” and “CVM”
respectively, owing to the basis of their implementation. For
more details, we refer the reader to Sec. [l Our implemen-
tations of both methods use the same particle filter and a
motion model derived for the data collection platform. We
make two modifications to our implementation of [35]. First,
we use the open source ORB descriptor [31] in favor of
the SIFT descriptor used in the original work. Second, we
compute the query descriptor on our synthetic local map
images to match the view point achieved by image warping
in the original work. For the approach described in [18], we
use the publicly available pre-trained weights for the CVM-
Net-II model [17]. We compute the CVM query descriptor
from a panorama stitched from the UGV’s forward facing
cameras to match the panoramic image format with which
the network was trained. For both we report the trajectory
taken by the location of the most probable particle at every
timestep. We also compare against an alternate version of our
method, referred to as "Ours (Binning)" in which we replace
our probabilistic mapping technique with spatial binning of
the colored pointcloud generated by the mapping module.

Experiments were run on a machine equipped with an
Intel i7-8650 CPU and 16 GB of RAM. The MSVIO,
local mapping, and registration processes are all modular
and run on separate threads. We first outline our system’s
performance with respect to the GPS groundtruth on the first
sequence of approximately 650 meters in length, and then
compare our system’s performance to the alternative methods
on the second sequence of approximately 2.3 kilometers.

The results of the first experiment can be seen in Fig. [I}

'Nearmap: nearmap.com



TABLE I: Quantitative localization metrics for all methods, in meters.

MSVIO ORB CVM Ours Ours (Binning)
Max Error 45.27 20.13  59.09  8.28 75.13
RMSE 18.75 9.53 2333 294 34.85

Our results are expressed in terms of the absolute trajectory
error (ATE). The maximum error for MSVIO and our po-
sition estimation was 16.28 meters and 4.87 meters, while
the RMSE was 7.72 meters and 2.11 meters, respectively.
The final drift of our approach was 3.73 meters, or 0.57%
of the total trajectory length, showing that while MSVIO
alone can experience significant amounts of drift, our method
recovers from drift and converges toward the ground truth.
We also observe that our outlier rejection is very effective.
All registrations that deviate significantly from the ground
truth are correctly rejected, while a majority (8 out of 12)
are correctly identified as inliers.

In our second experiment we compare our system to the
state-of-the-art methods outlined above. The qualitative and
quantitative comparisons can be found in Fig. Table. [
respectively. Overall, we see that our method outperformed
the state of the art and maintained the most accurate global
estimate across the 2.3 kilometers long sequence and that,
similarly to the first sequence, it was able to correct the drift
that arises from using only MSVIO for estimation. Notably,
we observe that our method significantly out preforms the
non-probabilistic variant indicating that our probabilistic
mapping technique has a significant positive impact on per-
formance. In addition, only our method was able to function
in real time. The ORB method’s runtime was 8 x slower than
ours while CVM’s was 100x slower.

Both comparison methods produced significantly less ac-
curate estimates than our approach. We hypothesize that the
cause of this decreased performance is derived from the fact
that the descriptor comparison measurement model has high
variance. This can cause the most probable particle to jump
around the true vehicle location at every sensor measurement,
and in extreme cases cause the entire distribution to diverge
from the ground truth trajectory.

It is also necessary to note that both comparison methods
had, unfortunately, non-optimal experimental conditions. The
ORB descriptor was designed for dense patches, but the
ORB method computed its query descriptor on our sparse
local map images as it was the only top down image
we could provide. Additionally, the CVM-Net used in this
experiment was trained using data on roadways. Therefore, it
is possible that the model was not able to generalize for the
natural environment of our experiments. These conditions,
however, are likely representative of those experienced in
real-world operation where a dense top down image may be
impossible to acquire due to occlusions, and data may not
exist for the deployment environment to pre-train a neural
model. Our method is able to generalize to never-before-
seen environments and perform well even with significant
occlusion from environmental features like vegetation.
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Fig. 7: Trajectories for all methods are shown in the top image while the
position on the 3 axes with respect to time is shown in the bottom 3 figures.

V. CONCLUSION AND FUTURE WORK

In this paper, we outlined the design of a global local-
ization pipeline for GPS-denied scenarios. A multi-stereo
VIO module was extended to provide robust odometry for
challenging environments. A probabilistic 3D occupancy grid
was created to generate accurate synthetic top down images
without significant artifacts and thus address the issue of
drastically differing perspectives between vehicle and aerial
imagery. A registration module was designed to align these
images with reference imagery to measure global location.
Finally, a pose graph was formulated to fuse odometry
and global measurements and provide a continuous global
state estimate for robot operation after loss of GPS signal.
We show that our system can localize in real time and
outperforms existing state-of-the-art methods on real world
datasets.

In its current form we have also found that our method
is sensitive to visual differences between the local map
and reference imagery. Such differences can be induced
due to photometric qualities of the captured ground images
(e.g. exposure, white balance) or by temporal changes (e.g.
reference imagery was captured during a different season).
Such visual differences can cause decreased performance
of our image registration method and in-turn degraded
localization accuracy. In future work, we plan to explore
registration techniques that generalize to a wider variety of
visual conditions as well as methods to normalize the sensed
and reference imagery to mitigate visual differences. Both
directions focus on robustifying the method to a variety of
different scenarios.
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